

3D Zero Knowledge Protocol

- 1 -

Authors：OCFT FiMAX Team

Frank Lu, Mu Jia, Menghan Wang, Danli Xie, Enke Liu, Pengcheng

Zhang, Wei Zhang, Liming Yao, Chengyong Feng, Luyan Zha,

Max Song, Pengfei Huan, Zhuoxin Yi, Wenjing Wu, Xiang Fan, Chengkai

Jia, Shiyi Fan, Fei Chen, Jun Lai, Jie Yao, Jun He, Xiaoli Zhang,

Wenqiang Li, Yang Yang, Juanjuan Yu, Wei Wei, Rui Lu, Jia Guo, Xin

Huang, Yanyu Chen, Fuqiang Jiang, Jingfeng Wang, Chunyan Gong,

Shiwei Feng

Preface：

3D Zero Knowledge Protocol (3D ZKP) is designed and implemented

by Ping An OneConnect’s FiMAX blockchain development team. It is one

of the fundamental protocols that powers FiMAX blockchain technology.

Ever since its birth in 2017, FiMAX’s 3D Zero Knowledge Protocol has

been used in almost all of Ping An’s blockchain deployments, including

major headlines such as Guangdong SME financing blockchain platform,

China’s Custom’s Tianjing Port initiative, Greater Bay Area’s “Linked

Port”project with China Merchant Group, and many others. It is one of the

very few, if not the only, widely used zero knowledge/secure computation

protocol in the world.

- 2 -

Index
Section One: 3D Zero Knowledge Protocol Overview.. - 4 -

1.1 Security Issues of Blockchain in Practice .. - 4 -

1.1.1 Businesses Have Strong Demand for Data Privacy - 4 -

1.1.2 Blockchain’s Data Dilemma .. - 5 -

1.2 3D ZK Protocol and its Application in Real Life .. - 6 -

1.2.1 Zero Knowledge verification with predefined business rules - 6 -

1.2.2 Zero Knowledge verification of encrypted data with dynamically defined

business rules ... - 8 -

1.2.3 Connecting Blockchain Data Silos ... - 9 -

1.3 Applications of 3D Zero Knowledge Protocol .. - 11 -

1.3.1 China Custom’s Tianjing Port Blockchain Initiative - 11 -

1.3.2 Guangdong SME Financing Platform ... - 11 -

1.3.3 Blockchain Cross-border Supply-chain Monitoring System - 12 -

Section Two: API Examples of 3D ZK Protocol .. - 13 -

2.1 3D ZKP Operation Modes ... - 13 -

2.2 Define Arithmetic Equation .. - 14 -

2.3 FiMAX Data Field Types .. - 15 -

2.4 Example Application：Trade Finance Solution .. - 16 -

2.4.1 Background ... - 16 -

2.4.2 Transaction Validation .. - 17 -

2.4.3 Cross Entity Data Validation ... - 21 -

2.4.4 Example Appendix：Data Templates ... - 22 -

Section Three: The 3D Zero Knowledge Protocol ... - 25 -

3.1 Protocol Overview ... - 25 -

3.2 Batch Verification of Multiplicative Operations .. - 30 -

3.3 Fact Hiding ZK Protocol ... - 31 -

3.4 3D Zero Knowledge Protocol Review ... - 34 -

- 3 -

Section Four: FXN, The Next Generation 3D ZK Protocol. .. - 37 -

Section Five: Secure Multi-Party Computation ... - 39 -

Section Six: Key Patents .. - 43 -

- 4 -

Section One: 3D Zero Knowledge Protocol Overview

1.1 Security Issues of Blockchain in Practice

1.1.1 Businesses Have Strong Demand for Data Privacy

Data has become an important factor in productivity and a key engine for

competitive advantage in the business world. Unlike traditional production

factors, data can be easily copied and used by competitors. Any disclosure of

data for even just a very short period of time can cause economic harm on

data owners. Therefore, it is not hard at all to understand why business

entities across industries take data security issues more and more seriously.

As a distributed data store, blockchain disseminates data to all

participants to ensure all nodes in the same blockchain are in sync. Although

having a shared view of data could bring efficiency in theory, no one is willing

to take the first step of sharing. Without access to data smart contracts cannot

operate and promises of blockchain will be greatly limited to a few basic

functions easily replaceable with traditional systems. There is little doubt that

data privacy issue is the biggest roadblock for serious adoption of enterprise

blockchain.

- 5 -

1.1.2 Blockchain’s Data Dilemma

There have been many approaches in the industry to work around the

data privacy issue. These approaches can be largely categorized into four

categories, all carries some serious contradictions that impede adoption:

• Confidential computing: TEE based approach is likely not secure

enough against sophisticated adversaries; Customers will be forced to

deal with vendor lock-in threat since at least part of their secret keys are

controlled by the vendor.

• Hash Digest: hashes cannot be used for any computation, making

blockchain nothing but an expensive digital signature alternative; this

approach may also be vulnerable to dictionary attack if not used

properly.

• Multi-ledger/channel: Recreate data silo (p2p connections) among

participants of a ledger/channel, destroying the promise of

synchronized shared ledger while adding unnecessary complexity to

problems that can be easily solved by traditional systems.

• Fully Encrypted Ledger Architecture: If data stored on blockchain are

encrypted, then they are only useful to those with the secret keys to

decrypt them unless very sophisticated cryptography is used (e.g. ZKP,

FHE, MPC).

From both security and value proposition perspective, the fully encrypted

ledger architecture offers the most promise if computational logic can be

efficiently performed on encrypted data. FiMAX’s 3D Zero Knowledge

Protocol is designed to use advanced crypto to enable participants of

- 6 -

blockchain data networks to cross validate its own data with other’s data, and

to collectively perform advanced computations while keeping data private to

their owners.

1.2 3D ZK Protocol and its Application in Real Life

3D Zero Knowledge protocol is designed to allow developers without a

background in cryptography to easily codify business rules using arithmetic

equations, allowing network participants to cross validate data with each other

while keeping them fully private. business equations can be defined using

both arithmetic operators (e.g. “+”,“-“,“*”, “/”) and comparison operators

(“>”,”<”, “=”). As proof creation time and verification time per operator are both

significantly less than 1 millisecond combined (more on this later), 3D ZK

Protocol is both efficient and practical for large scale enterprise deployment

since its birth in 2017. Applications for 3D ZK Protocol can be largely

categorized into three groups explained in the next three sub-sections.

1.2.1 Zero Knowledge verification with predefined business rules

 One of the most common applications of FiMAX blockchain is to allow

data of various types, origins, and roles to cross validate and test their

truthfulness. For example, blockchain can connect regulators and financial

institutions to monitor and cross validate trade data through contracts and

invoices provided by oversea exporters; logistic bills provided by logistic

providers; and bill of entries, purchase orders, and importer contracts provided

by domestic importers.

- 7 -

 To achieve the business goal of the aforementioned scenario, there are

two data privacy related prerequisites that must be fulfilled: First, data still

belong to data owners and no one else. Second, encrypted data can be used

in business logic while stay encrypted.

 3D Zero Knowledge Protocol is a system that allows encrypted data to be

plugged into any arithmetic equation for data verification.

Figure 1.1 Cross validation of different types of data

Taking the trade scenario as an example in Figure 1.1, blockchain stores

encrypted invoice data from sellers, purchase order data from buyers, and

logistic bill data from logistic companies. With 3D ZKP technology, participants

can validate trade data without actually seeing the data it tries to validate. As

figure 1.1 illustrates, invoice data from a seller are cross validated with logistic

data from a shipping company (total amount = unit price * number of

shipment) in zero knowledge. The verification logic is coded into smart

contract. If the total amount on the invoice cannot pass the validation logic

specified in the smart contract then the transaction will fail.

The potential of blockchain lays on the promise of its ability to create

central record of truth. Such promise can only be fulfilled when data is

- 8 -

available for others to use while they are still private to their owners, a

dilemma can be solved by 3D Zero Knowledge Protocol.

1.2.2 Zero Knowledge verification of encrypted data with

dynamically defined business rules

In the last section, we explained that we can code ZK verification logic into

smart contracts to verify data to be submitted to the blockchain. But it is not

reasonable to assume that all related data for a business transaction will be

stored on a blockchain. Furthermore, while there are some pre-defined

business validation rules can be coded into smart contracts, many more need

to be defined dynamically based on business rules not known when the

network was built.

Figure 1.2 Dynamic Processing of Arithmetic Equations

- 9 -

In Figure 1.2, Alice, Bob, Carol, and David are participants of a

blockchain data network, data “a”, “b”, “c”, and “d” are encrypted data stored

on that blockchain. 3D ZK Protocol allows third party entities in and outside of

the blockchain network to cross validate its data with encrypted data stored on

that blockchain. When a fifth participant Evan wants to check the validity of

data“y”, it defines an arithmetic equation (e.g. a + b − c ÷ d), with input

parameters being the references to encrypted data on blockchain, to describe

the validation rule and sends it to the data owner. Upon receiving the request,

data owner will process the arithmetic equation and generate the proof for the

validation accordingly and send the proof back to Evan.

As we can see from this example, the encrypted data on blockchain was

never shared to Evan, but Evan can still validate the truthfulness of his data by

leveraging the data on blockchain using the business validation logic it defined

in real time.

1.2.3 Connecting Blockchain Data Silos

Almost every large enterprise nowadays run a few experimental

blockchain projects. Unfortunately, most of these blockchain deployments

become their own disconnected data silos overtime, completely departs from

the promise the same technology advertised in the beginning. It is easier said

than done to connect them due to data privacy issues. Consider many

blockchain platforms use sub-chains (or sub-ledger, channels) to offer data

protection, interconnecting blockchains would immediately expose clear text

data to connecters.

- 10 -

3D ZKP promotes a great ambition to interconnect blockchain networks

because data are guaranteed to be safe between networks. Participants of

one network can create query on data of another blockchain. As we will

explain in later sections, 3D ZKP and FiMAX’s fully encrypted ledger

architecture not only offer a way to cross validate data, they also pave the way

for data collaboration across business entities and can serve as the building

block for other data collaboration technologies such as federated machine

learning (more on this later).

Figure 1.3 Interconnecting Blockchain Data Silos with 3D ZKP

- 11 -

1.3 Applications of 3D Zero Knowledge Protocol

1.3.1 China Custom’s Tianjing Port Blockchain Initiative

Launched in April 2019, Cross-border trade transactions not only

comprise buyers, sellers, and logistics but also involve indirect stake holders

from different regions and jurisdictions. Transaction data could include

sensitive business data and subject to stringent regulatory requirements.

These restrictions will make digitization of data difficult, and workflows cannot

be automated if data cannot be accessed digitally.

Businesses also have no incentive to share data with partners and

financial institutions, making it hard for regulators to monitor trade transactions

and difficult for financial institutions to assess financial risk.

With FiMAX blockchain and its 3D ZKP technology, data of different

origins can now be cross validated without privacy concern. Regulators can

leverage blockchain data to monitor trading activities in real time, and financial

institution can better asses the financial risk of its customers and therefore be

more confident in making business loans.

1.3.2 Guangdong SME Financing Platform

Launched in January 2020. Guangdong SME Financing platform borrows

our experience from HKMA’s eTradeConnect. It aims to provide a platform

that connects banks and SMEs needing business loans. Since data related to

business loan transactions are sensitive to banks, all data on blockchain are

encrypted and every data field is encrypted with a unique secret key.

- 12 -

When making a business loan request, 3D Zero Knowledge Protocol can

cross validate data from sellers, buyers, and logistic providers to ensure they

are legitimate and detect potential frauds early in the loaning process. Banks

can cross check with other banks connected to the blockchain network to

detect over/double financing activities from bad actors.

As of first quarter 2020, the Guangdong SME financing platform has

already connected 213 types of data from 26 government sectors, and has

collected data for 11 million SMEs based in Guangdong province. 129

financial institutions either connected to or registered on the blockchain based

financing platform including China Construction Bank, China Commerce Bank,

and Ping An Bank.

1.3.3 Blockchain Cross-border Supply-chain Monitoring System

Launched in the third quarter 2020 and owned by a large regional inter-

government collaboration organization. This system records trade data from

importer/exporters, local/foreign customs, outbound/inbound logistics, and

buyer/seller agents from various countries, allowing regulators to have a

complete view on cross border trades. Unlike traditional blockchain solutions

where traceability is offered by either linking clear text data or incomputable

hash digests, FiMAX’s 3D ZKP solution goes one step beyond and links

encrypted data.

In addition, the platform can automatically match and link information

from different participants for the same trade. For example, product category,

quantity, production date and other information are automatically matched and

cross-verified in the cipher state, preventing the occurrence of false labeling of

product origin and other types of misinformation.

- 13 -

Section Two: API Examples of 3D ZK Protocol

2.1 3D ZKP Operation Modes

3D ZKP offers two types of validation mode: the smart contract validation

mode where smart contract performs zero knowledge validation of transaction

inputs, and the dynamic validation mode where data are simply pulled from

blockchain and validated by off-chain applications.

l Smart Contract Validation Mode：Validation logics are pre-defined and

coded into smart contracts. Blockchain smart contracts run their

validation logic on every transaction passes them. Data on blockchain

can only be altered if the transaction passes the smart contract validation

phase.

l Dynamic Validation Mode：Validation logics are defined dynamically (in

real time) and verified individually by validation requesters. Validation

requesters may or may not be participants of a blockchain network. They

use arithmetic equation to define validation logics and send them to data

owners. After receiving proof transcripts from data owners, validation

requesters use both encrypted data on blockchain and proof transcripts

to validate the data they intent to validate.

3D ZKP APIs：

/** 3D ZKP smart contract Validation Mode **/
public interface ZKPEquationService {
 /** send validation request **/
 boolean submitRequest(String id, ZKPReqParams
req);
 /** query result, tx accepted if successful **/

- 14 -

 ZKPProofResult queryZKPProof(String id);
}

/** 3D ZKP dynamic validation mode **/
public interface RTZKPEquationService {
 /** send validation request **/
 boolean provideZKPRequest(String id, ZKPReqParams
req);
}

/** Request parameters **/
@Data
public class ZKPReqParams {
 private String equation;
 private Map<String, DataPath> dataPath;
}

/** Query Results **/
@Data
public class ZKPProofResult {
 private String id;
 private boolean isSuccess;
 private ZKPReqParams params;
}

2.2 Define Arithmetic Equation

Validation requesters use arithmetic equations to define business rules:

 (a * b + c) * d + 100 == e / f - 10

alphabet letters are references to data on blockchain. Equations on the

left and right sides of the comparator “==”may reference data from the same

blockchain or from two different blockchains. There are two ways to reference

blockchain data: through direct specification of data address on blockchain,

and through a SQL statement to specify its path.

- 15 -

Direct specification of data address: provide type，dataID，jsonPath of

the data tries to reference. jsonPath is used to reference a specific Field of a

data structure (more on this later)

@Data
public class DataPath {
 private String type;
 private String dataID;
 private String jsonPath;
}

SQL statement specification: provide the SQL reference to the data of

interest. Note that data owner can easily run the query since it has access to

decrypted data. Optionally, data owners can provide the proof transcript to

prove it has queried the correct data.

Example: return type where amount is greater than 100 from jsonPath

SELECT jsonpath FROM type WHERE name = 100

2.3 FiMAX Data Field Types

One of the highlights of FiMAX blockchain is that it adopts fully encrypted

ledger architecture, where every data field on FiMAX blockchain is encrypted.

FiMAX developers need to specify the encryption type for each data field, and

there are three encryption types to choose from: plain (not recommended),

symmetric encryption (default), and Pedersen Commitment (required for

secure computation such as ZKP and MPC protocols).

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface DataField {
 /** field name **/

- 16 -

 String alias() default "";
 /** encryption type; defaults to symmetric
encryption **/
 DataFieldEncrypt encrypt() default
DataFieldEncrypt.SYM;
 /** floating point **/
 int exponent() default 0;
 /** specify if negative **/
 boolean negative() default false;
}

public enum DataFieldEncrypt {
 /** plain text **/
 PLAIN(0),
 /** symmetric encryption **/
 SYM(1),
 /** Pedersen commitment **/
 ZKP(2);
 /** ... **/ -->
}

2.4 Example Application：Trade Finance Solution

2.4.1 Background

Figure 2.1 3DZKP Application in Trade Finance Workflow

- 17 -

Beta Electronic, an upstream buyer, purchased electronic chips from an

oversea supplier Alpha Semiconductor. To complete the production of the

purchase, Beta Electronics borrows money from a local bank to finance its

operation.

In practice, there could be multiple blockchain networks storing data

related to this trade, and participants of a trade could include government

agencies (e.g. customs and tax department), global logistic providers, and

many others. To make our example easier to understand, we will just

demonstrate how financial institutions validate data submitted by Alpha

Semiconductor and Beta Electronic. We also assume that data on blockchain

have already been cross validated.

2.4.2 Transaction Validation

Beta Electronic (buyer) created a purchase order request, and Alpha

Semiconductor (seller) created the invoice for the sell. Beta Electronics needs

to obtain financing from a bank to complete product delivery due to capital

turnover issues.

Before applying for financing, Beta Electronic submitted its invoice,

customs declaration and the counterparty’s purchase order data to the

blockchain. Once the submitted data passed validation performed by smart

contracts, they will be written to the blockchain and made available for third

party financial institutions to query and verify.

In this example, Beta Electronic made three purchase orders（Alpha-

order-001，Alpha-order-002，Alpha-order-003）, and made an agreement

- 18 -

with Alpha Semiconductor to use the 3-6-1 payment method (30%

prepayment, 60% mid-term payment, and 10% final payment). Beta Electronic

also created two invoices (Beta-invoice-001, Beta- invoice-002) for the order;

the first invoice is for the first two orders, Alpha Semiconductor shipped them

with the same packing number from the customs （Customs-packing-001）,

and the second invoice is for the final order received（Customs-packing-

002）by Beta Electronic.

Third party validation requester can now use arithmetic equation to define

the relationship among purchase order, invoice, and bill of entry (from

customs) as follows:

/***
* order-1-unit-price: order 1 unit price；
* order-2-unit-price：order 2 unit price；
* order-3-unit-price：order 3 unit price；
* packing-1-num: Custom Declaration 1: Num. of goods；
* packing-2-num: Custom Declaration 2: Num. of goods；
* invoice-1-exchange-rate：Invoice 1: exchange rate；
* invoice-1-total-amount：Invoice 1: Total Amount；
* invoice-2-exchange-rate：Invoice 2: exchange rate；
* invoice-2-total-amount：Invoice 2: Total Amount；
***/
3 * ((order-1-unit-price + order-2-unit-price）*
packing-1-num + order-3-unit-price * packing-2-num)
== 10 *（invoice-1-exchange-rate * invoice-1-total-
amount + invoice-2-exchange-rate * invoice-2-total-
amount）

l Beta Electronic creates the proof for the validation logic defined above

by calling API RTZKPEquationService.provideZKPRequest， the JSON

input for the request is defined here：

- 19 -

{
 "id": "Beta-invoice vs Alpha-order verification-
001",
 "req": {
 "equation": "3 * ((order-1-unit-price + order-2-
unit-price）* packing-1-num + order-3-unit-price *
packing-2-num) == 10 *（invoice-1-exchange-rate *
invoice-1-total-amount + invoice-2-exchange-rate *
invoice-2-total-amount）",
 "dataPath": {
 "order-1-unit-price": {
 "type": "PURCAHSE_ORDER",
 "dataID": "k",
 "jsonPath": "unitPrice"
 },
 "order-2-unit-price": {
 "type": "PURCAHSE_ORDER",
 "dataID": "Alpha-order-002",
 "jsonPath": "unitPrice"
 },
 "order-2-unit-price": {
 "type": "PURCAHSE_ORDER",
 "dataID": "Alpha-order-003",
 "jsonPath": "unitPrice"
 },
 "packing-1-num": {
 "type": "PACKING",
 "dataID": "Customs-packing-001",
 "jsonPath": "goodsNum"
 },
 "packing-2-num": {
 "type": "PACKING",
 "dataID": "Customs-packing-002",
 "jsonPath": "goodsNum"
 },
 "invoice-1-exchange-rate": {
 "type": "INVOICE",
 "dataID": "Beta-invoice-001",
 "jsonPath": "exchangeRate"
 },
 "invoice-1-total-amount": {
 "type": "INVOICE",
 "dataID": "Beta-invoice-001",
 "jsonPath": "totalAmount"

- 20 -

 },
 "invoice-2-exchange-rate": {
 "type": "INVOICE",
 "dataID": "Beta-invoice-002",
 "jsonPath": "exchangeRate"
 },
 "invoice-2-total-amount": {
 "type": "INVOICE",
 "dataID": "Beta-invoice-002",
 "jsonPath": "totalAmount"
 }
 }
 }
}

l It is assumed that data on blockchain has already passed the validation,

but participants on the network can still call API

ZKPEquationService.queryZKPProof to validate the data themselves.

l Non-numerical encrypted data such as buyer name (“Beta Eletronic”)

can also be validated. In the following example request, validator sends

the request to check if the buyer name on the encrypted invoice data

match that on the purchase order. Note that buyer name field must be

encrypted using Pedersen Commitment for this protocol to work.

{
 "id": "Beta-invoice-001 vs Alpha-order-001 buyerId",
 "req": {
 "equation": "invoice_buyer == order_buyer",
 "dataPath": {
 "invoice_buyer": {
 "type": "INVOICE",
 "dataID": "Beta-invoice-001",
 "jsonPath": "buyerId"
 },
 "order_buyer": {

- 21 -

 "type": "PURCHASE_ORDER",
 "dataID": "Alpha-order-001",
 "jsonPath": "buyerId"
 }
 }
 }
}

2.4.3 Cross Entity Data Validation

In order to further verify the authenticity of the trade and ensure the

financing is indeed used for the procurement in the current contract, the bank

may need to check if the information on customs declaration is consistent with

that on the bill of lading.

The bill of lading is owned by Alpha Semiconductor, so the bank cannot

obtain the original data from Beta Electronic. Nevertheless, the bank can

again use the 3D ZK protocol to perform the validation across two blockchain

networks.

l A bank sends the validation request to check if the number on customs

declaration is consistent with that on the bill of lading by calling API

RTZKPEquationService.provideZKPRequest with JSON input：

{
 "id": goods 001 invoice vs order",
 "req": {
 "equation": "customs_num == delivery_num",
 "dataPath": {
 "customs_num ": {
 "type": "CUSTOMS",
 "dataID": "Customs-packing-001",
 "jsonPath": "goodsNum"
 },
 "delivery_num": {
 "type": "DELIVERY",

- 22 -

 "dataID": "Delivery-bill-001",
 "jsonPath": "goodsNum"
 }
 }
 }
}

This request is sent to both Alpha Semiconductor of Blockchain A

network and Beta Electronic of Blockchain B network, and validated

locally by the bank itself with transcripts returned from both networks.

l The bank checks the validity of the bill of lading by making sure the date

on bill of lading is no earlier than March 14, 2021

{
 "id": "delivery 001 expire validate",
 "req": {
 "equation": "time < 1615680000",
 "dataPath": {
 "time": {
 "type": "DELIVERY",
 "dataID": "Delivery-bill-001",
 "jsonPath": "expireDate"
 }
 }
 }
}

2.4.4 Example Appendix：Data Templates

Purchase Order：

@DataTemplate(id = "PURCHASE_ORDER")
public class DefaultPurchaseOrder {

 /** Buyer Id **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String buyerId;

- 23 -

 /** Seller Id **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String sellerId;

 /** PO unit price **/
 @DataField(encrypt = DataFieldEncrypt.ZKP,
exponent = 3)
 private BigDecimal unitPrice;

 /** ... other related fields(skip) **/`
}

Invoice：

@DataTemplate(id = "INVOICE")
public class DefaultInvoice {

 /** Buyer Id **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String buyerId;

 /** Seller Id **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String sellerId;

 /** Invoice identifier **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String invoiceId;

 /** Invoice total amount **/
 @DataField(encrypt = DataFieldEncrypt.ZKP,
exponent = 3)
 private BigDecimal totalInvoiceAmount;

 /** Invoice exchange rate **/
 @DataField(encrypt = DataFieldEncrypt.ZKP,
exponent = 3)
 private long exchangeRate;

 /** ... Other related fields(skip) **/`
}

Custom declaration：

- 24 -

@DataTemplate(id = "CUSTOMS")
public class DefaultCustoms {

 /** Declaration ID **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String entryId;

 /** number of goods **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private long goodsNum;

 /** ... other related fields(skip) **/`
}

Bill of lading：

@DataTemplate(id = "DELIVERY_BILL")
public class DefaultDeliveryBill {

 /** shipment Id **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private String billId;

 /** number of packages **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private long packNum;

 /** creation date **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private long createDate;

 /** expiration date **/
 @DataField(encrypt = DataFieldEncrypt.ZKP)
 private long expireDate;

 /** ... other related fields (skip) **/`
}

- 25 -

Section Three: The 3D Zero Knowledge Protocol

3D Zero Knowledge Protocol is a solution set that integrates several

crypto algorithms. It is a system designed to solve complex problems by

leveraging different algorithm as long as the data are encrypted using

Pedersen Commitment. It enables developers without cryptography

background to define business rules with arithmetic equations and run on

encrypted data.

The technical concept and its implementation algorithm was first

introduced in 2017, at the time when main stream ZKP and other crypto

algorithms proposed for blockchain are slow, inefficient, difficult to use, and

based on debatable security assumptions.

3D ZKP is the core technology behind several high profile blockchain

projects including Guangdong Blockchain SME Financing Platform ,“Linked

Port” with China Marchant Group, “OCEAN”platform with China Customs, and

the backbone blockchain system for many of China’s ministries and projects

operated by international organizations.

3.1 Protocol Overview

Pedersen commitments are represented with brackets e.g.［a］, where

the letter ‘a’inside the brackets is the hidden data. In a Pedersen Commitment

a ＝g)*h),, the discrete log relation between g) and h) is unknown so the

commitment scheme is computationally binding. We also know for a fact that

Pedersen Commitment is perfectly hiding so it is forever safe to keep the data

on blockchain even if quantum computer is available today. We use Pedersen

- 26 -

commitment as the encryption algorithm for data stored (including text)

because we found it to be the lowest common denominator for many ZKP and

MPC protocols. We also use the pairing group 𝔾) for the Pedersen

commitments because pairing function will enable more functionalities on

encrypted data through integration with other crypto protocols.

Pairing function is defined by e: 𝔾)×	𝔾2 ⟶ 𝔾4 s.t. e(aP, bP) ⟶

e(P, P)*9。There are primarily three types of pairing functions：Type1:	𝔾) =

	𝔾2；Type2:	𝔾) ≠ 	𝔾2，but there exist an efficient function such that ϕ:𝔾2 ⟶

𝔾); and Type3:	𝔾) ≠ 	𝔾2.

Pedersen commitment has additive homomorphic property, so additive

operations of encrypted data on blockchain 𝑎 + 𝑏 = 𝑐 can be verified with

the homomorphic property of input parameters 𝑎 , 𝑏 , and 𝑐 . The tricky

part is to verify multiplication and division operations i.e. { 𝑐 , 𝑎 , 𝑏 ∈

𝔾 : 𝑎, 𝑏, 𝛼, 𝛽 ∈ ℤE; 	𝑎 ∙ 𝑏 = 𝑐｝.

There generally two approaches to handle multiplicative operations, the

most talked about approach in blockchain articles is the SNARKs approach.

The most inciting part of the SNARKs approach is that it offer sub-linear

verifier cost and constant proof size. However, the downside is also serious,

expensive prover cost make SNARKs generally very slow and the marginal

benefit of verifier efficiency only starts to appear when there are at least

1,000+ multiplicative operation. Furthermore, their reliance on constraint

system and subsequent preprocessing of application circuits make SNARKs

- 27 -

protocols unsuitable for processing dynamic created business rules explained

in earlier sections.

The other approach is the trivial approach mostly used in MPC protocols.

These protocols are straight forward to use and require neither constraint

system nor preprocessing of application circuits. The down side of the trivial

approach is their proof size is generally very high and grow linearly, and is

only efficient for simple arithmetic equations.

Neither approach was suitable for us to build developer friendly APIs

illustrated in section two, so we end up designing our own set of algorithms

and give birth to the 3D Zero Knowledge Protocol. The concept of 3D ZKP

was first introduced in 2017. We will give a detailed explanation of the original

algorithms designed in 2017-2018 in this section to illustrate the idea, and

then in the next section we will give a quick intro to its latest iteration - FXN.

Pairing function itself is a multiplicative operation on two group elements.

However, such pairing function can only be performed once on a group

element. For simplicity, we will assume Type1 pairing is used here.

We start by assuming an logical group element 𝑖I = 𝑒 ℎ, ℎ ∈ 𝔾I. Note

that we never learn the exponent 𝑥 of 𝑔IN = 𝑖I but we can still get 𝑖I using

pairing function. If the two group element inputs to the pairing function are

Pedersen commitments a 	and	 b , then the product of the pairing is：

e a , b = g4*9h4
*PQ9,i4

,P ∈ 𝔾I

- 28 -

Two problems: first, the product is no longer a Pedersen commitment

since it now embeds a new base point 𝑖I; Second, since the product is in 𝔾I

we cannot use pairing function to perform another multiplicative operation on

the result again.

We use a simple trick to solve the problems mentioned above. Prover

create 𝑐 = 𝑔STℎSUQTV ∈ 𝔾, that satisfies the relation { 𝑐 , 𝑎 , 𝑏 ∈

𝔾 : 𝑎, 𝑏, 𝛼, 𝛽 ∈ ℤE; 	𝑎 ∙ 𝑏 = 𝑐｝, and then create a public key 𝑃𝐾VU such that

𝑃𝐾VU = 𝑖I
VU where the private key is 𝑎𝛽, or the multiplicative product of secret

keys of 𝑎 and 𝑏 . If a prover can prove the knowledge of 𝑎𝛽, then the

prover can prove the hidden value of 𝑐 is the multiplicative product of

hidden values of 𝑎 and 𝑏 . Note that 𝑃𝐾VU is extracted by verifier using

the equation below:

𝑃𝐾VU =
𝑒 𝑎 , 𝑏
𝑒 𝑐 , 𝑔

= 𝑖I
VU ∈ 𝔾I

 if the prover does not know the value of 𝛼𝛽, then it cannot create the

proof of knowledge of 𝛼𝛽 based on the discrete log assumption. Any protocol

that can prove the knowledge of 𝛼𝛽 will work. In practice, we use the digital

signature algorithm defined in China’s SM2 standard. The proof transcript, or

the signature, of the proof is denoted by 𝑠𝑖𝑔VU

Since 𝑐 is on curve 𝔾, pairing function can be performed on 𝑐 again

with another group element, allowing unlimited number of multiplicative

operations to be performed on each encrypted (committed) value.

- 29 -

We use the same trick to prove division operation. The difference is that

provers need to use the multiplicative inverses of committed values as

divisors, and then provers need to provide the proofs to prove inverse

commitments are valid.

For example, the modular multiplicative inverse of b ∈ ℤZ is b[) ∈ ℤZ,

such that b ∙ b[) = 1 ∈ ℤZ. the inverse commitment of b is represented as

b[) = g9]^hP_ ∈ 𝔾, βa is a new blinding key for b[) that is not related with

β, the blinding key of b . the prover needs to prove that 𝑑 = a / b also

needs to prove that 1 = b b[) . The full transcript is: b[) , sig,P, sigPP_,

h9P_Q9]^P, note that 1 = 	g) ∙ h9P_Q9]^P. Verifiers can use the equations below

to retract the public keys needed to verify the division operation:

𝑃𝐾UU' = e b , b[) /e(g) ∙ PK9P_Q9]^P, g) = i4
PP_

𝑃𝐾VU_ =
𝑒 𝑎 , 𝑏[)

𝑒 𝑑 , 𝑔
= 𝑖I

VU_

if the prover can provide the proof of knowledge of ββa and 𝛼𝛽a, then the

division operation can be verified by verifiers. In summary, there are two steps

in verifying division operation. first, verify b[) such that 1 = b b[) .

Second, take b[) to the standard multiplication operation and verify if

d =? a b . To make the protocol more efficient, you can join the two public

keys and proof them with just one signature.

- 30 -

3.2 Batch Verification of Multiplicative Operations

Verify one multiplication at a time is obviously expensive and not much

better than the trivial approach. Fortunately, it is straight forward to upgrade

the protocol to allow batch verification of multiplicative operations, which will

considerably shrink the proof size.

The trick is to let verifier create a challenge k, which is then used as the

seed to create set 𝐤 = {k), … , kk}. The updated protocol is listed here:

𝒫	compute

 cs = g*t9th*tPtQ9t,t, i = {1, … , n}

𝒫 → 𝒱: [c]

𝒱 → 𝒫: k	
$
ℤZ

𝒫	compute

 k = {k), … , kk}

 s = αsβsk
) ∙ ks

 sig{ ⟸ sign(s,message) //message

𝒫	 → 𝒱: sig{

 PK{ =
} *t , 9t ~t�

^ 	

} 	 �t ~
t�

^ ,�
	 ∈ 𝔾4

 Verifier use sig{ to verify PK{. So instead of sending proof of knowledge

for each multiplicative operation, the whole batch can be verified using just

- 31 -

one signature. In practice, both Prover and Verifier use Fiat-Shamir heuristic

to generate challenge k to make the protocol non-interactive.

 It is worth noticing that if Type2 or Type3 pairing is used, some

commitments need to be on 𝔾2 before it can be used in pairing function，and

verifiers need to verify if the value on 𝔾2 match that on 𝔾): e ([𝑎�])�
) ∙

	𝑙� , 𝑔2) =
? e(𝑔), ([𝑎�]2 ∙ 𝑙�)�

)).

 Now we got a working protocol that we can use as the underlying

algorithm for the APIs explained in section 2. It is not perfect in today’s

standard, but it was secure, efficient, and easy to implement, and probably the

best option other there in 2017. We have certainly come a long way since

then. before we give a short intro to the underlying algorithm FXN we use

today, we will first explain the fact-hiding protocol in the next sub-section,

which is an absolutely critical feature in 3D ZKP.

3.3 Fact Hiding ZK Protocol

Allowing network participants to dynamically use arithmetic equations to

specify verification rules create privacy problems on its own, because

information may leak when the same data records are used in multiple

arithmetic equations. In addition, data to be verified also need to be sealed to

prevent provers learn business secrets from verification requests.

We therefore need a protocol that can not only hide the verification fact

from provers but also protect data leaked to verifiers through overlapping

- 32 -

verification rules. We call this protocol “fact-hiding”, and it can be plugged into

any ZK protocol as long as the data fact is encrypted using Pedersen

Commitment.

Basic Workflow：

 Bob wants to verify his data fact [b] from Alice’s data using the

verification rule defined by arithmetic equation 𝐸() such that 𝐸() = 𝑝) +

E�
E�
	∗ 𝑝� − 𝑝� , where 𝑝) , … , [𝑝�] are encrypted data stored on

blockchain. 𝑎 is the data Alice calculated from the equation 𝐸() using

𝑝) , … , [𝑝�] such that [𝑎] = 𝑝) + E�
E�
	∗ 𝑝� − 𝑝� , and Bob wants to know

if 𝑏 =? 𝐸() or 𝑏 =? [𝑎]. Let’s assume:

𝑎 = 𝑔SℎN

𝑏 = 𝑔Tℎ�

Step One：

Bob sends the verification request to Alice, the request includes the

verification equation E() and data to be verified b .

Step Two：

Alice use her data as inputs to E() and to get a (note since Alice has

access to her own data, so the hidden value of a is calculated in clear text

and the result a is encrypted using Pedersen Commitment. Alice also

generates and sends transcripts a’ , [b’], v11, v12 to Bob along with a .

aa = [a], 	= 	 g*,h�,

	 ba = 	 [b], 	= 	 g9,h�,

- 33 -

v11 = 	𝑒(h�,, g2) 	= 	h4�,

v12 = 	h,

Step Three：

Bob perform the final verification by checking whether 𝑏 =? [𝑎].

First, get the product of a and α on 𝔾4:

𝑒 aa , g2 = 	 g4*,h4�,

g4*,h4�,/v11 = g4*,h4�,/h4�, = g4*,

Second, get the product of b and α on 𝔾4:

𝑒(ba , g2) = g49,h4
�,

𝑒 v12�, g2	 = h4
�,

g49,h4
�,/h4

�, = g49,

 By checking g4*, =
? g49,, Bob will know whether the hidden value of b

passed the verification test or not. Since α is unknown to Bob, so bob will not

learn anything about a.

 Up to this point the protocol will only work properly if Alice is honest when

generating the transcripts. To make the protocol secure against malicious

provers, we have to do a few more things.

Active Security：

To guard against dishonest prover, the protocol would require Alice to provide

three additional transcripts: p, = g2,
]^, Sig��, Sig��

First, verify that aa , [ba] are created from a , [b] and the same secret α.

- 34 -

𝑒 aa , p, = g4*h4� =
? e(a , g2)

𝑒 ba , p, = g49h4
� =? e(b , g2)

Second, verify that v12 is created from the same secret α.

𝑒 v12, p, = e h,, g2,
]^ =? h4

Third, confirm v11 is created from base point h4 exponent aα.

PK�� =
e aa , g2
v11

=
g4*,h4�,

h4�,
= g4*,

after retrieve PK��, verifier can use Sig��	to prove the knowledge of aα on g4.

 After plugging the fact-hiding sub-protocol to the ZK protocol for arithmetic

equation, Bob no longer needs to send its data facts to be verified in clear text

to Alice, and Alice the prover no longer need return anything other than a

Boolean answer back to bob.

 Fact-hiding protocol is not limited to the above algorithm which only

compares whether the hidden values of two commitments equal. More

advanced algorithms that support comparison operators (e.g. 𝑎 > 𝑏) is

also available. We will not cover them in this report because they are a bit too

complicated to be included in this report.

3.4 3D Zero Knowledge Protocol Review

 3D Zero Knowledge Protocol was born in 2017. At the time SNARKs

algorithms were largely non-universal (require expensive preprocessing for

every application) and lack-transparency (require trusted setup). Although

latest SNARKs have made much progress on these issues, they are still very

- 35 -

expensive to use and some even rely on dangerously forward-thinking

security assumptions (e.g. Group of Unknown Order). On the other hand, the

trivial approach has largely been ignored and therefore hasn’t made much

progress at all. Nevertheless, 3D ZK Protocol designed three years ago is not

perfect either, it still has a lot of short comings:

1. To achieve transparency, the protocol must apply Type 1 or Type 2

pairing, not the most efficient and arguably most popular Type 3 pairing.

2. Although prover cost is just the creation of a digital signature and the

creation of Pedersen Commitments (one group exponential operation

each since the hidden value is cached), Verification cost is linear and on

each multiplication operation is approximately one pairing, which is on

the expensive side.

3. When Type 3 pairing is used in a blockchain consortium, the consortium

would need to use a MPC protocol to set up the base point ℎ) and ℎ2.

MPC approach usually just require one participant to be honest for the

whole protocol to be safe. However, MPC based initiation approach will

make cross blockchain data connection almost impossible because it is

almost guaranteed that different consortium will generate different

initiation parameters.

The performance of this version of 3D ZKP largely dependents on the

implementation the pairing function. In practice we use the pairing parameters

- 36 -

defined in China’s SM9 standard that runs on R-ate pairing. The table below is

the average performance tested on a single core Intel i5 @2.5Ghz CPU.

Unit：ms 𝔾) 𝔾2 𝔾4

Point Add （One） 0.006ms 0.008ms 0.003ms

Point Add （Batch） 0.0007ms 0.001ms

Point Mult.（Base） 0.018ms 0.054ms 0.131ms

Point Mult.（Random） 0.068ms 0.155ms 0.473ms

Pairing 0.508ms

 The average prover cost of a multiplicative operation per thread is

approximately 0.02ms, and the average verifier cost is approximately 0.6ms.

Note that multiplicative operation defined here is not the same as the

“multiplication gate” defined in SNARKs protocols, whereas a constraint

system (e.g. R1CS) is usually used to represent arithmetic operations.

Constraint system not only double the number of multiplication gates required

to capture an arithmetic operation, it often require expensive application level

pre-processing (translate an arithmetic circuit to a SNARKs protocol

understandable format), something almost never captured in their

performance comparison table.

- 37 -

Section Four: FXN, The Next Generation 3D ZK Protocol.

FXN (stands for Fact-hiding Cross-validation Network) is the replacement

protocol for the algorithm explained in section three. Although it has no

relationship with the original protocol, it is compatible with all existing

blockchain networks using Pedersen Commitment to encrypt data.

FXN is magnitudes more efficient than the original protocol. It not only

retains the lowest prover cost known (1n EXP), but also offers one of the

cheapest verifier cost known when operating in fast-verifier mode.

FXN runs in two operation modes. The standard mode offers the lowest

prover cost known of just 1n EXP. The verification cost is also just around 1n

EXP but still grows linearly. In the fast verifier mode, the prover cost is slightly

increased to approximately 3n EXP but the verifier cost is further dropped to

just 9 EXP. FXN paper will be released in 2021.

The performance comparison chart of FXN and other popular SNARKs

and ZK protocols are listed below. To make comparison easier, we set 30EXP

= 1Pairing. Furthermore, we lower Bulletproof’s performance by three times

since it cannot use base point to speed up elliptic curve point multiplication

due to its use of Pedersen Vector commitment (require n unique base point g).

- 38 -

 FXN no longer needs pairing and only depends on discrete logarithmic

assumption. We realized some latest SNARKs rely on new and/or

questionable security assumptions such as group of unknown orders to

achieve transparency. Such radical approach may sound plausible in

academia research, but it could be dangerous for industry adaption.

Other than being universal and transparent, the practical performance of

FXN is even better than the chart suggests. This is because FXN process

proof generation and verification from the arithmetic equations directly, unlike

SNARKs where an arithmetic equation first needs to be interpreted to and

captured by a constraint system and then converted to a format processable

by the underlying algorithm (a process sometimes denoted as “circuit

preprocessing”). The only arguable down side of FXN is that the space

consumption is not technically succinct. However, real life experience tells us

that succinctness here is not needed because the proof transcripts should

only be known by the validation requester (verifier) and the data owner

(prover). Such proof transcripts shall never be stored on a public storage (e.g.

blockchain) nor be validated by anyone other than the validation requester.

- 39 -

Section Five: Secure Multi-Party Computation

We believe secure computation is the future for enterprise blockchain because

data is what make businesses thrive in the information age.

Since Blockchain itself is a decentralized storage system, it can be easily

converted to a system that enables advanced federated learning. In this

setting, each participant will encrypt their data and store them on a blockchain,

and then leverage different secure computation technologies to securely

process its data with other’s data.

In our example we present a case where an insurance company and a

bank agree to collaborate and use each other’s data to build a data model

while still keeping their own data private.

The first step is to have both participants use key derivation trick to

encrypt every data field with a unique secret key (per-field encryption) and put

data on a blockchain. This step alone will give participants granular access

control of data at field level, allow participants to grant others access to its

data at field level.

- 40 -

To enable secure computation, we require all numeric data to be encrypted

using Pedersen Commitment. Note that this is also a pre-requisite for the 3D

ZKP/FXN protocol explained above. Commitment schemes are building

blocks for many MPC protocols. Once we have a standardized the encryption

protocol, it is almost straight forward to plug in known MPC algorithms serve

your need.

 In this example, Bank A and Insurance Company B joined their data and

use MPC protocols to calculate average age, total sum of account balances,

median fico score, and sum product of age-transaction count of a group of

customers while keeping everyone’s data secure, allowing more data feed into

their learning model.

- 41 -

after a learning model on customer risk analysis is built, Insurance Company

B can run its data model on data of both companies. For example, Insurance

Company B model’s decision tree may require data from Bank A to complete

risk analysis of a customer. Instead of giving Insurance Company B access to

the actual data, Bank A use ZKP protocols to return Boolean answers to

Insurance Company B’s data model to complete the analysis.

- 42 -

- 43 -

Section Six: Key Patents

201910382454.2 Zero Knowledge Technology for Trade Finance Transaction

Management; Frank Lu; Menghan Wang; Dayue Zhao; Bao Zhang

202010068608.3 Zero-knowledge proof method, device and storage

medium；Frank Lu; Xuejia Lai; Mu Jia; Danli Xie; Pengcheng Zhang

201910390795.4 Blockchain based transaction processing method and

device; Pengcheng Zhang; Mu Jia; Frank Lu

201811529043.3 A root key protection and access system for computer

readable

storage medium and system; Chengyong Feng; Frank Lu; Songsong Zhang

202010326385.6 A method to compare encrypted values for device and

storage medium；Frank Lu; Xuejia Lai; Mu Jia; Pengcheng Zhang; Danli Xie

201910542027.6 A proof system for size comparison of encrypted data；Danli

Xie; Wenming Zhang; Mu Jia; Frank Lu

201810874378.2 Cross-ledger transaction method and device; Frank Lu;

Xuejia Lai; Mu Jia; Danli Xie

- 44 -

201810436870.1 User communication method, device, and storage medium

on blockchain；Mu Jia; Danli Xie; Frank Lu

201910885396.5 Data calling method, device and computer readable storage

medium； Pengcheng Zhang; Mu Jia; Frank Lu; Danli Xie; Fuqiang Jiang;

Xiaoli Zhang

201811250449.8 Device, method and storage medium for blockchain

transaction processing; Frank Lu; Zhenfei Chu; Shiwei Feng

201910371485.8 A blockchain consensus method and storage medium;

Zhenfei Chu; Peipei Zhang; Shiwei Feng; Wenqiang Li

202010354819.3 Blockchain based data processing method, device, and

storage medium; Bao Zhang; Danli Xie; Menghan Wang; Bin Zhu; Enke Liu

201910185053.8 Device, method and storage medium for endorsement in

blockchain; Zhenfei Chu; Wei Zhang; Peipei Zhang; Wenqiang Li; Yujian

Zhang

- 45 -

202010046528.8 Transaction endorsement processing method, server and

computer readable storage medium; Frank Lu; Muhao Chen; Shiwei Feng;

Zhenfei Chu

201910435849.4 Data encryption method, device, computer equipment and

storage medium; Menghan Wang; Dayue Zhao; Luyan Zha; Zhuoxin Yi

201910671356.0 Updating method, device, medium for data fields stored in

blockchain; Pengfei Huan; Zhuoxin Yi; Danli Xie; Fei Chen

202010363964.8 Node synchronization method and storage medium of

blockchain; Frank Lu; Jie Yao

201910435849.4 Data encryption method, device, and storage medium;

Menghan Wang; Dayue Zhao; Luyan Zha; Zhuoxin Yi

201910667396.8 Blockchain construction method, device, medium on cloud

service; Pengfei Huan; Wei Zhang; Qingliang Zhang; Songsong Zhang

201811381039.7 Method and related equipment for recovering lost secret key

based on symmetric encryption; Wenming Zhang; Ruixue Wang; Danli Xie;

Pengfei Huan

- 46 -

201710060336.0 Safe transaction method and system based on blockchain;

Frank Lu; Pengfei Huan; Yu Zhang

201911150248.5 Blockchain based file access method, device, computer

equipment and storage medium; Wantao He; Pengfei Huan; Yu Lu; Yang

Yang

201910440458.1 Blockchain based project data verification method and

device; Jianxin Gao; Jun Lai; Menghan Wang; Dayue Zhao; Enke Liu; Bao

Zhang; Luyan Zha

- 47 -

Special Thanks to：

Zhenfei Chu, Yu Zhang, Dayue Zhao, Jianxin Gao, Wenming Zhang,

Ruixue Wang, Yujian Zhang, Songsong Zhang, Cheng Feng, Bao

Zhang, Wei Zhang, Wanjing Chen, Zhengxiang Fang, Huadu Li,

Weilin He, Yun Huo, Guojun Luo, Yan Li, Cheng Lin, Meng Wang, Li

Zhu, Yangyue Feng, Mingce Xue

